设向量组(Ⅰ)α
1
,α
2
,…,α
s
和(Ⅱ)β
1
,β
2
,…,β
t
,如果(Ⅰ)可由(Ⅱ)线性表出,且秩r(Ⅰ)=r(Ⅱ),证明(Ⅰ)与(Ⅱ)等价.
【正确答案】正确答案:设秩r(Ⅰ)=r(Ⅱ)=r,(Ⅰ)的极大线性无关组为:

. 因为(Ⅰ)可由(Ⅱ)线性表出,那么 r(α
1
,α
2
,…,α
s
,β
1
,β
2
,…,β
t
)=r(β
1
,β
2
,…,β
t
)=r. 所以

是向量组α
1
,α
2
,…,α
s
,β
1
,β
2
,…,β
t
的一个檄大线性尢天组. 从而β
1
,β
2
,…,β
t
可由

【答案解析】