【答案解析】解析:令F(x)=f(x)+g(x),假设F(x)在x=x
1
处连续,由f(x)=F(x)-g(x)及已知条件g(x)仅在x=x
2
处间断,其他点处均连续,于是推出f(x)在x=x
1
处连续,这与已知条件矛盾,故F(x)在x=x
1
处间断。同理,推出F(x)在x=x
2
处亦间断。下面一一举出其他三个选项的反例: 选项(A)的反例f(x)=

g(x)=-f(x),而f(x)+g(x)=0无间断点;选项(C)的反例与选项(A)的相同,此时f(x)g(x)=-1,无间断点;选项(D)的反例
