设随机变量X的概率密度为f(x),已知D(X)=1,而随机变量Y的概率密度为f(-y),且ρ XY =
【正确答案】正确答案:E(Z)=E(X+Y)=E(X)+E(Y)= yf(-y)dy. 令y=-x,则 xf(x)dx, 所以 E(Z)=0. 又 D(Y)=E(Y 2 )一[E(Y)] 2 =E(Y 2 )一[一E(X)] 2 , 而 E(Y 2 )= x 2 f(x)dx=E(X 2 ), 所以 D(Y)=E(Y 2 )一[一E(X)] 2 =E(X 2 )一[E(X)] 2 =D(X)=1. 于是 D(Z)=D(X+Y)=D(X)+D(Y)+2Cov(X,Y) =D(X)+D(Y)+2 XY =1+1+
【答案解析】