【正确答案】正确答案:设λ
1
,λ
2
,…,λ
n
为A的n个互不相同的特征值,则A有n个线性无关特征向量p
1
,p
2
,…,p
n
,记可逆矩阵P=[p
1
,p
2
,…,p
n
],有

(1)由AB=BA得P
-1
ABP=P
-1
BAP,于是P
-1
AEBP=P
-1
BEAP. 令E=PP
-1
,有 (P
-1
AP)(P
-1
BP)=(P
-1
BP)(P
-1
AP), 即 A
1
(P
-1
BP)=(P
-1
BP)A
1
. 下面证明P
-1
BP是对角矩阵. 设P
-1
BP=(c
ij
)
n×n
,则

比较两边对应元素得 λ
i
c
ij
=λ
j
c
ij

(λ
i
一λ
j
)c
ij
=0, 当i≠j时,λ
i
≠λ
j
,则c
ij
=0,故

从而B相似于对角矩阵. (2)若p
i
(i=1,2,…,n)也是B的特征向量,设对应特征值为μ
i
,即 Bp
i
=μ
i
p
i
(i=1,2,…,n), 则有
