问答题
设A是m×n矩阵,B是n×m矩阵,已知E
m
+AB可逆.
问答题
验证E
n
+BA可逆,且(E
n
+BA)
-1
=E
n
-B(E
m
+AB)
-1
A;
【正确答案】正确答案:在不存在歧义的情况下,简化记号,省略E的下标m,n. 因 (E+BA)[E-B(E+AB)
-1
A] =E+BA-B(E+AB)
-1
A-BAB(E+AB)
-1
A =E+BA-B(E+AB)(E+AB)
-1
A=E+BA-BA=E. 故E+BA可逆,且(E+BA)
-1
=E-B(E+AB)
-1
A.
【答案解析】
问答题
设
【正确答案】正确答案:

=E+[a
1
,a
2
,a
3
][b
1
,b
2
,b
3
]

E+AB. 由(1)知E+AB可逆,则E+BA可逆,且(E+BA)
-1
=E-B(E+AB)
-1
A,反之若E+BA可逆,则E+AB可逆,且(E+AB)
-1
=E-A(E+BA)
-1
B. 因为E+BA=E+[b
1
,b
2
,b
3
][a
1
,a
2
,a
3
]
T
=E+[a
1
b
1
+a
2
b
2
+a
3
b
3
]=E+O=E, 故E+BA可逆,(E+BA)
-1
=E. 故W=E+AB可逆,且 W
-1
=E-A(E+BA)
-1
B=E-[a
1
,a
2
,a
3
]
T
.E.[b
1
,b
2
,b
3
]

【答案解析】