单选题
6.
设A,B均为n阶矩阵,A可逆且A~B,则下列命题中:
①AB~BA; ②A
2
~B
2
; ③A
T
~B
T
; ④A
-1
~B
-1
.
正确命题的数量为 ( )
A、
1
B、
2
C、
3
D、
4
【正确答案】
D
【答案解析】
由A~B可知:存在可逆矩阵P,使得P
-1
AP=B,故
P
-1
A
2
P=B
2
, P
T
A
T
(P
T
)
-1
=B
T
, P
-1
A
-1
P=B
-1
,
所以A
2
~B
2
,A
T
~B
T
,A
-1
~B
-1
.又由于A可逆,可知A
-1
(AB)A=BA,故AB~BA.故正确的命题有4个,选(D).
提交答案
关闭