设f(χ)连续,Ω(R)={(χ,y,z)|χ 2 +y 2 +z 2 ≤2Ry},R>0. (Ⅰ)将三重积分I= f(z)dV化为定积分; (Ⅱ)求J=
【正确答案】正确答案:(Ⅰ)Ω(R)是球域:χ 2 +(y-R) 2 +z 2 ≤R 2 .选择先二(χ与y)后一(z)的积分顺序,Ω(R)表为 -R≤z≤R,(χ,y)∈D(z)={(χ,y)|χ 2 +(y-R) 2 ≤R 2 -z 2 }, 于是I= 圆域D(z)的面积为π(R 2 -z 2 ),因此 I=π∫ -R R f(z)(R 2 -z 2 )dz. (Ⅱ)用题(Ⅰ)的结果得 用洛必达法则得
【答案解析】