设A为3阶矩阵,α
1
,α
2
,α
3
是线性无关的3维列向量,且满足Aα
1
=α
1
+α
2
+α
3
,Aα
2
=α
2
+α
3
,Aα
3
=2α
2
+3α
3
.
问答题
求矩阵B,使A[α
1
,α
2
,α
3
]=[α
1
,α
2
,α
3
]B;
【正确答案】正确答案:由题设条件,有 A[α
1
,α
2
,α
3
]=[Aα
1
,Aα
2
,Aα
3
]=[α
1
+α
2
+α
3
,2α
2
+α
3
,2α
2
+3α
3
] =[α
1
,α
2
,α
3
]

所以,B=

【答案解析】
问答题
求A的特征值;
【正确答案】正确答案:记矩阵C=[α
1
,α
2
,α
3
],则由(1)知AC=CB,又因α
1
,α
2
,α
3
是线性无关的3维列向量,知C为3阶可逆方阵,故得C
—1
AC=B,计算可得B特征值为λ
1
=λ
2
=1,λ
3
=4,因相似矩阵有相同特征值,得A的特征值为λ
1
=λ
2
=1,λ
3
=4.
【答案解析】
问答题
求一个可逆矩阵P,使得P
—1
AP为对角矩阵.
【正确答案】正确答案:对于λ
1
=λ
2
=1,解方程组(E一B)x=0,得基础解系ξ
1
=(一1.1,0)
T
,ξ
2
=(一2,0,1)
T
;对应于λ
3
=4,解方程组(4E—B)x=0,得基础解系己=(0,1,1)
T
.令矩阵 Q=[ξ
1
ξ
2
ξ
3
]=

则有 Q
—1
B Q=

因Q
—1
BQ=Q
—1
C
—1
ACQ=(CO)
—1
A(CQ),记矩阵 P—CQ一[α
1
,α
2
,α
3
]

【答案解析】