设函数f(x),g(x)在x=x
0
有连续的二阶导数且f(x
0
)=g(x
0
),f'(x
0
)=g'(x
0
),f''(x
0
)=g''(x
0
)≠0,说明这一事实的几何意义.
【正确答案】
正确答案:曲线y=f(x),y=g(x)在公共点M
0
(x
0
,f(x
0
))即(x
0
,g(x
0
))处相切,在点M
0
的某邻域有相同的凹凸性.因f''(x),g''(x)在x
0
处连续,f''(x
0
)=g''(x)>0(或<0)
x
0
的某邻域(x
0
-δ,x
0
+δ),当x∈(x
0
-δ,x
0
+δ)时f''(x)>0,g''(x)>0(或f''(x)<0,g''(x)<0).又由曲率计算公式知,这两条曲线在点M
0
处有相同的曲率
【答案解析】
提交答案
关闭