问答题
已知β可用α
1
,α
2
,…,α
s
线性表示,但不可用α
1
,α
2
,…,α
s-1
线性表示.证明
(1)α
s
不可用α
1
,α
2
,…,α
s-1
线性表示;
(2)α
s
可用α
1
,α
2
,…,α
s-1
,β线性表示.
【正确答案】正确答案:方法一 由于β可用α
1
,α
2
,…,α
s
线性表示,可设有表示式 β=k
1
α
1
+k
2
α
2
+…+k
s
α
s
(I) (1)用反证法 如果α
s
可用α
1
,α
2
,…,α
s-1
线性表示;设α
s
=t
1
α
1
+t
2
α
2
+…+t
s-1
α
s-1
,代入(I)式得β用α
1
,α
2
,…,α
s-1
线性表示式: β=(k
1
+t
1
)α
1
+(k
2
+t
2
)α
2
+…+(k
s-1
+t
s-1
)α
s-1
, 与条件矛盾. (2)(I)中的k
s
≠0(否则β可用α
1
,α
2
,…,α
s-1
线性表示).于是有

【答案解析】