单选题 已知A2=A,则A的特征值为______。
A.1 B.2 C.1或2 D.1或0

【正确答案】 D
【答案解析】[解析] 设λ是A的任一特征值,X是λ所属的特征向量,按定义有
AX=λX
两边同用矩阵A左乘,有A2X=A(λX)=λAX=λ2x
利用已知条件A2=A,有A2X=AX=λX,
故λ2X一λX,
故 (λ2-λ)X=0
因为X是特征向量,按定义X≠0,故有λ2-λ=O
故矩阵A的特征值只能是0或1。
故正确答案为D。