解答题 20.设A为n阶实对称矩阵,满足A2=E,并且r(A+E)=k<n.
①求二次型xTAx的规范形.
②证明B=E+A+A2+A3+A4是正定矩阵,并求|B|.
【正确答案】①由于A2=E,A的特征值λ应满足λ2=1,即只能是1和一1.于是A+E的特征值只能是2和0.A+E也为实对称矩阵,它相似于对角矩阵Λ,Λ的秩等于r(A+E)=k.于是A+E的特征值是2(k重)和0(n一k重),从而A的特征值是1(k重)和一l(n一k重).A的正,负关系惯性指数分别为k和n一k,xTAx的规范形为y12+y22+…+yk2一yk+12一…一yn2
②B是实对称矩阵.由A2=E,有B=3E+2A,B的特征值为5(k重)和1(n一k重)都是正数.因此B是正定矩阵.
【答案解析】