选择题   若(X,Y)服从二维正态分布N(0,0,1,1,ρ),令U=αX+βY,V=αX-βY,则cov(U,V)=______
 
【正确答案】 B
【答案解析】由(X,Y)~N(0,0,1,1,ρ),得X~N(0,1),Y~N(0,1). 则 E(X)=0,1=D(X)=E(X2)-(EX)2=E(X2), E(Y)=0,1=D(Y)=E(Y2)-(EY)2=E(Y2). cov(U,V)=E[(U-EU)(V-EV)]=E(UV)-E(U)E(V)=E(UV) =E[(αX+βY)(αX-βY)] =E(α2X2-β2Y2)=α2-β2.