【正确答案】关于衰老的机制具有许多不同的学说,概括起来主要有差错学派和遗传学派两大类,前者强调衰老是由于细胞中的各种错误积累引起的,后者强调衰老是遗传决定的自然演进过程。
差错学派:细胞衰老是各种细胞成分在受到内外环境的损伤作用后,因缺乏完善的修复,使“差错”积累,导致细胞衰老。根据对导致“差错”的主要因子和主导因子的认识不同,可分为不同的学说,这些学说各有实验证据。
(1)代谢废物积累细胞代谢产物积累至一定量后会危害细胞,引起衰老,哺乳动物脂褐质的沉积是一个典型的例子,脂褐质是一些长寿命的蛋白质和DNA、脂类共价缩合形成的巨交联物,次级溶酶体是形成脂褐质的场所,由于脂褐质结构致密,不能被彻底水解,又不能排出细胞,结果在细胞内沉积增多,阻碍细胞的物质交流和信号传递,最后导致细胞衰老。
(2)大分子交联 过量的大分子交联是衰老的一个主要因素,如DNA交联和胶原交联均可损害其功能,引起衰老。在临床方面胶原交联和动脉硬化、微血管病变有密切关系。
(3)自由基学说 自由基是一类瞬时形成的含不成对电子的原子或功能基团,普遍存在于生物系统。主要包括:氧自由基(如羟自由基·OH)、氢自由基(·H)、碳自由基、脂自由基等,其中·OH的化学性质最活泼。自由基含有未配对电子,具有高度反应活性,可引发链式自由基反应,引起DNA、蛋白质和脂类,尤其是多不饱和脂肪酸等大分子物质变性和交联,损伤DNA、生物膜、重要的结构蛋白和功能蛋白,从而引起衰老各种现象的发生。
(4)线粒体DNA突变在线粒体氧化磷酸化生成ATP的过程中,有1/%~4/%氧转化为氧自由基,也叫活性氧,因此线粒体是自由基浓度最高的细胞器。mtDNA裸露于基质,缺乏结合蛋白的保护,最易受自由基伤害,而催化mtDNA复制的DNA聚合酶γ不具有校正功能,复制错误频率高,同时缺乏有效的修复酶,故mtDNA最容易发生突变。mtDNA突变使呼吸链功能受损,进一步引起自由基堆积,如此反复循环。衰老个体细胞中mtDNA缺失表现明显,并随着年龄的增加而增加,许多研究认为mtDNA缺失与衰老及伴随的老年衰退性疾病有密切关系。
(5)体细胞突变与DNA修复外源的理化因子,内源的自由基本均可损伤DNA,导致体细胞突变。如辐射可以导致年轻的哺乳动物出现衰老的症状,这与个体正常衰老非常相似。正常机体内存在DNA的修复机制,可使损伤的DNA得到修复,但是随着年龄的增加,这种修复能力下降,导致DNA的错误累积,最终细胞衰老死亡。DNA的修复并不均一,转录活跃基因被优先修复,而在同一基因中转录区被优先修复,而彻底的修复仅发生在细胞分裂的DNA复制时期,这就是干细胞能永葆青春的原因。
(6)重复基因失活真核生物基因组DNA重复序列不仅增加基因信息量,而且也是使基因信息免遭机遇性分子损害的一种方式。主要基因的选择性重复是基因组的保护性机制,也可能是决定细胞衰老速度的一个因素,重复基因的一个拷贝受损或选择关闭后,其他拷贝被激活,直到最后一份拷贝用完,细胞因缺少某种重要产物而衰亡。
遗传学派:认为衰老是遗传决定的自然演进过程,一切细胞均有内在的预定程序决定其寿命,而细胞寿命又决定种属寿命的差异,外部因素只能使细胞寿命在限定范围内变动。
(1)程序性衰老程序性衰老理论认为,生物的生长、发育、衰老和死亡都由基因程序控制的,衰老实际上是某些基因依次开启或关闭的结果。
(2)复制性衰老 Hayflick(1961)报道,人的成纤维细胞在体外培养时增殖次数是有限的。后来许多实验证明,正常的动物细胞无论是在体内生长还是在体外培养,其分裂次数总存在一个“极极值”。此值被称为“Hayflick"极限,亦称最大分裂次数。如人胚成纤维细胞在体外培养时最多只能增殖60~70代。
细胞增殖次数与端粒DNA长度有关。体细胞染色体的端粒DNA会随细胞分裂次数增加而不断缩短。细胞DNA每复制一次端粒就缩短一段,当缩短到一定程度至Hayflick点时,可能会启动DNA损伤检测点,激活p53,引起p21表达,导致不可逆地退出细胞周期,走向衰亡。
【答案解析】