单选题
已知n维向量组α
1
,α
2
,α
3
,α
4
是线性方程组Ax=0的基础解系,则向量组aα
1
﹢bα
4
,aα
2
﹢bα
3
,aα
3
﹢bα
2
,aα
4
﹢bα
1
也是Ax=0的基础解系的充分必要条件是 ( )
【正确答案】
D
【答案解析】解析:向量组aα
1
﹢bα
4
,aα
2
﹢bα
3
,aα
3
﹢bα
2
,aα
4
﹢bα
1
均是Ax=0的解,且共4个,故该向量组是Ax=0的基础解系

该向量组线性无关.因(aα
1
l﹢bα
4
,aα
2
﹢bα
3
,aα
3
﹢bα
2
,aα
4
﹢bα
1
)=(α
1
,α
2
,α
3
,α
4
)

且α
1
,α
2
,α
3
,α
4
线性无关,则aα
1
﹢bα
4
,aα
2
﹢bα
3
,aα
3
﹢bα
2
,aα
4
﹢bα
1
线性无关

=(a
2
-b
2
)≠0
