解答题
4.已知y1(x)=ex,y2(x)=u(x)ex是二阶微分方程(2x-1)y"-(2x+1)y'+2y=0的解,若u(-1)=e,u(0)=-1,求u(x),并写出该微分方程的通解。
【正确答案】由已知得
y'
2=u'(x)e
x+u(x)e
x=[u'(x)+u(x)]e
x,
y"
2=e
x[u"(x)+2u'(x)+u(x)],
所以
(2x-1)e
x[u"(x)+2u'(x)+u(x)]-(2x+1)[u'(x)+u(x)]e
x+2u(x)e
x=0,
化简可得u"/u'=

,即(lnu')'=

,两边对x求积分得
lnu'(x)=-∫

【答案解析】