【正确答案】解:(Ⅰ)由概率分布的性质知a+0.2+0.1+b+0.2+0.1+c=1,即a+b+c=0.4.
由(X,Y)的概率分布可写出X的边缘概率分布为
X |
-1 |
0 |
1 |
P |
a+0.2 |
b+0.3 |
c+0.1 |
故E(X)=-(a+0.2)+(c+0.1)=-0.2,即a-c=0.1. 又因[*] 即a+b=0.3. 将(*),(**),(***)联立,解方程组得a=0.2,b=0.1,c=0.1. (Ⅱ)Z的可能取值为-2,-1,0,1,2,则 P{Z=-2}=P{X=-1,Y=-1}=0.2, P{Z=-1}=P{X=-1,Y=0}+P{X=0,Y=-1}=0.1, P{Z=0}=P{X=-1,Y=1}+P{X=0,Y=0}+P{X=1,Y=-1}=0.3, P{Z=1}=P{X=1,Y=0}+P{X=0,Y=1}=0.3, P{Z=2}=P{X=1,Y=1}=0.1. 故Z的概率分布为
Z |
-2 |
-1 |
0 |
1 |
2 |
P |
0.2 |
0.1 |
0.3 |
0.3 |
0.1 |
(Ⅲ)P{X=Z}=P{X=X+Y}=P{Y=0}=0+0.1+0.1=0.2.