选择题   设[*]δ为大于零的常数,h(x)在x0无定义,又g'-(x0),[*]均存在,则g(x0)=a,g'-(x0)=b是f(x)在x0可导的
 
【正确答案】 C
【答案解析】  首先考察f(x)在x=x0的连续性.
   f(x)在x=x0连续[*]
   [*],则g(x)在x=x0左连续).
   [*]a=g(x0)
   补充定义h(x0)=a,则[*]
   当g(x0)=a时
   [*]
   f'(x0)[*]f'-(x0)=f'+(x0)[*]g'-(x0)=h'+(x0)=b.
   因此在题设条件下,f(x)在x=x0可导[*]g(x0)=a,g'-(x0)=b.
   选C.