解答题 17.设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=
【正确答案】因为r(A)=r<n,所以齐次线性方程组AX=0的基础解系含有n-r个线性无关的解向量,设为ξ1,ξ2,…,ξn-r
设η0为方程组AX=b的一个特解,
令β00,β110,β220,…,βn-rn-r0,显然β0,β1,β2,…,βn-r为方程组AX=b的一组解.
令k0β0+k1β1+…+kn-rβn-r=0,即
(k0+k1+…+kn-r0+k1ξ1+k2ξ2+…+kn-rξn-r=0,
上式两边左乘A得(k0+k1+…+kn-r)b=0,
因为b为非零列向量,所以k0+k1+…+kn-r=0,于是
k1ξ1+k2ξ2+…+kn-rξn-r=0,
注意到ξ1,ξ2,…,ξn-r线性无关,所以k1=k2=…=kn-r=0,
故β0,β1,β2,…,βn-r线性无关,即方程组AX=b存在由n-r+1个线性无关的解向量构成的向量组.设β1,β2,…,βn-r+2为方程组AX=b的一组线性无关解,
令γ12-β1,γ23-β1,…,γn-r+1n-r+2-β1,根据定义,易证γ1,γ2,…,γn-r-1线性无关,又γ1,γ2,…,γn-r+1为齐次线性方程组AX=0的一组解,即方程组AX=0含有n-r+1个线性无关的解,矛盾,所以AX=b的任意n-r+2个解向量都是线性相关的,所以AX=b的线性无关的解向量的个数最多为n-r+1个.
【答案解析】