已知α
1
,α
2
,α
3
线性无关,证明2α
1
+3α
2
,α
2
一α
3
,α
1
+α
2
+α
3
线性无关.
【正确答案】正确答案:(定义法,拆项重组) 若x
1
(2α
1
+3α
2
)+x
2
(α
2
一α
3
)+x
3
(α
1
+α
2
+α
3
)=0,整理得 (2x
1
+x
3
)α
1
+(3x
1
+x
2
+x
3
)α
2
+(-x
2
+x
3
)α
3
=0. 由已知条件α
1
,α
2
,α
3
线性无关,故组合系数必全为0,即

【答案解析】