设A=E—2ξξ
T
,其中ξ=(x
1
,x
2
,…,x
n
)
T
,且有ξ
T
ξ=1。则
①A是对称矩阵;
②A
2
是单位矩阵;
③A是正交矩阵;
④A是可逆矩阵。
上述结论中,正确的个数是( )
【正确答案】
D
【答案解析】解析:A
T
=(E—2ξξ
T
)
T
=E
T
一(2ξξ
T
)
T
=E—2ξξ
T
=A,①成立。 A
2
=(E—2ξξ
T
)(E—2ξξ
T
)=E一4ξξ
T
+4ξξ
T
ξξ
T
=E一4ξξ
T
+4ξ(ξ
T
ξ)ξ
T
=E,②成立。 由①、②,得A
2
=AA
T
=E,故A是正交矩阵,③成立。 由③知正交矩阵是可逆矩阵,且A
—1
=A
T
,④成立。 故应选D。