【正确答案】正确答案:(1)因为

∫
0
t
f(r
2
)r
2
dr∫
0
t
drf(r
2
)dr一[∫
0
t
f(r
2
)rdr]
2
>0. 令 g(t)=∫
0
t
f(r
2
)r
2
dr∫
0
t
f(r
2
)dr一[f(r
2
)rdr]
2
, 则 g"(t)=f(t
2
)∫
0
t
f(r
2
)(t一r)
2
dr>0, 故g(t)在(0,+∞)内单调增加. 因为g(t)在t=0处连续,所以当t>0时,有g(t)>g(0).又g(0)=0,故当t>0时,g(t)>0. 因此,当t>0时,F(t)>
