解答题 24.设二次型f=2x12+2x22+ax32+2x1x2+2bx1x3+2x2x3经过正交变换X=QY化为标准形f=y12+y22+4y32,求参数a,b及正交矩阵Q.
【正确答案】二次型f=2x12+2x22+ax32+2x1x2+2bx1x3+2x2x3的矩阵形式为
f=XTAX.
其中A=.因为QTAQ=B=,所以A~B(因为正交矩阵的转置矩阵即为其逆矩阵),于是A的特征值为1,1,4.
而|λE-A|=λ3-(a+4)λ2+(4a-b2+2)λ+(-3a-2b+2b2+2),所以有
λ3-(a+4)λ2+(4a-b2+2)λ+(-3a-2b+2b2+2)=(λ-1)2(λ-4),
解得a=2,b=1.当λ12=1时,由(E-A)X=0得ξ1=.λ3=4时,
由(4E-A)X=0得ξ3=.显然ξ1,ξ2,ξ3两两正交,单位化为
【答案解析】