解答题
二次型
经过正交变换化为标准形
问答题
常数a,b.
【正确答案】
【答案解析】
[解] 令
,则f(x
1
,x
2
,x
3
)=X
T
AX,矩阵A的特征值为λ
1
=5,λ
2
=b,λ
3
=-4,
由
得
,解得
从而
问答题
正交变换的矩阵Q.
【正确答案】
【答案解析】
[解] 将λ
1
=λ
2
=5代入(AE-A)X=0,即(5E-A)X=0,
由
得λ
1
=λ
2
=5对应的线性无关的特征向量为
将λ
3
=-4代入(λE-A)X=0,即(4E+A)X=0,
由
得λ
3
=-4对应的线性无关的特征向量为
令
单位化得
所求的正交变换矩阵为
提交答案
关闭