问答题 设函数f(x)在[a,b]上满足a≤f(x)≤b,|f'(x)|≤q<1,令un=f(un-1),n=1,2,3,…,u0∈[a,b],证明:
【正确答案】因为|un+1-un|=|f(un)-f(un-1)|=|f'(ξ1)||un-un-1|
≤q|un-un-1|=q|f(un-1)-f(un-2)|=q|f'(ξ2)||un-1-un-2|
≤q2|un-1-un-2|≤…≤qn|u1-u0|
0≤q<1,故级数绝对收敛,所以,级数
【答案解析】[考点] 级数收敛的证明