【正确答案】正确答案:(Ⅰ)利用一阶微分形式不变性求得 d(ysinx)一dcos(x一y)=0, 即 sinxdy+ycosxdx+sin(x一y)(dx一dy)=0, 整理得 [sin(x一y)一sinx]dy=[ycosx+sin(x—y)]dx, 故

(Ⅱ)将原方程两边取对数,得等价方程

(*) 现将方程两边求微分得

化简得xdx+ydy=xdy—ydx,即 (x—y)dy=(x+y)dx, 由此解得

为求y",将y'满足的方程(x—y)y'=x+y两边再对x求导,即得 (1一y')y'+(x一y)y"=1+y'→y"=

. 代入y'表达式即得
