填空题
设z=z(x,y)由z-ez+2xy=3确定,则曲面z=z(x,y)在点P0(1,2,0)处的平面方程为______.
【正确答案】
1、2(x-1)+(y-2)=0
【答案解析】[解析] 将P0(1,2,0)的坐标代入曲面方程,满足曲面方程,即点P0在曲面z=z(x,y)上.
记F(x,y,z)=z-ez+2xy-3,则F'x=2y,F'y=2x,F'z=1-ez,且有
F'x(P0)=4,F'x(P0)=2,F'z(P0)=0.
于是可得曲面的切平面方程
F'x(P0)(x-x0)+F'y(P0)(y-y0)+F'z(P0)(z-z0)=0,
即4(z-1)+2(y-2)+0(z-0)=0,化简得
2(x-1)+(y-2)=0.