【答案解析】[证明] (Ⅰ)由于A
3
α=3Aα-2A
2
α,故
A
4
α=3A
2
α-2A
3
α=3A
2
α-2(3Aα-2A
2
α)=7A
2
α-6Aα.
若k
1
α+k
2
Aα+k
3
A
4
α=0,即k
1
α+k
2
Aα+k
3
(7A
2
α-6Aα)=0,
亦即k
1
α+(k
2
-6k
3
)Aα+7k
3
A
2
α=0,因为α,Aα,A
2
α线性无关,故
所以,α,Aα,A
4
α线性无关,因而矩阵B可逆.
(Ⅱ)因为(B
T
B)
T
=B
T
(B
T
)
T
=B
T
B,故B
T
B是对称矩阵.又
,由于矩阵B可逆,恒有Bx≠0,那么恒有x
T
(B
T
B)x=(Bx)
T
(Bx)>0,故二次型x
T
(B
T
B)x是正定二次型,从而矩阵B
T
B是正定矩阵.