设f(x)在[a,b]上二阶可导,且f'(a)=f'(b)=0.证明:存在ξ∈(a,b),使得|f''(ξ)|≥
【正确答案】正确答案:由泰勒公式得 两式相减得f(b)-f(a)= [f''(ξ 1 )-f''(ξ 2 )], 取绝对值得|f(b)-f(a)|≤ [|f''(ξ 1 )|+|f''(ξ 2 )|] (1)当|f''(ξ 1 )|≥|f''(ξ 2 )|时,取ξ=ξ 1 ,则有|f''(ξ)≥ |f(b)-f(a)|; (2)当|f''(ξ 1 )|<|f''(ξ 2 )|时,取ξ=ξ 2 ,则有|f''(ξ)|≥
【答案解析】