解答题
20.
[2004年] 设有方程x
n
+nx一1=0,其中n为正整数,证明此方程存在唯一正实根x
n
,并证明当α>1时,级数
【正确答案】
令f
n
(x)=x
n
+nx一1,由f
n
(0)=一1<0,f
n
(1/n)=(1/n)
n
>0及连续函数的零点定理知,方程x
n
+nx一1—0存在正实根x
n
∈(0,1/n).由于f'
n
(x)=nx
n-1
+n,当x>0时,f'
n
(x)>0,可见f
n
(x)在[0,+∞)上单调增加,故f
n
(x)在[0,+∞)上存在唯一正实根x
n
.由于0<x
n
<1/n,有0<x
n
α
<1/n
α
,而α>1,级数
收敛,故
【答案解析】
提交答案
关闭