解答题 [2008年] 设随机变量X与Y相互独立,X的概率分布为P(X=i)=1/3(i=-1,0,1),Y的概率密度为
问答题 9.求P(Z≤1/2|X=0);
【正确答案】解一 由于X,Y相互独立,有

解二
【答案解析】
问答题 10.求Z的概率密度fZ(z).
【正确答案】因X的可能取值为-1,0,1,而fY(y)取非零值的自变量范围为0≤y≤1,而-1≤x≤1,故-1≤z=x+y≤2.于是分下列几种情况进行讨论.
①当z≥2时,X,Y的所有取值均满足上式,故
F(z)=P(Z≤z)=P(X+Y≤z)=1.
②当z=x+y<-1时,X,Y只能取空值,则P(X+Y≤z)=P()=0.
当-1≤z<2时,下用全概公式求出FZ(z)的表示式:
FZ(z)=P(Z≤z)=P(X+Y≤z)=P(X+Y≤z|X=-1)P(X=-1)+P(X+Y≤z|X=0)P(X=0)+P(X+Y≤z|X=1)P(X=1)
=(1/3)[P(y≤z+1)+P(Y≤z)+P(Y≤z-1)].
考虑到Y在[0,1]上服从均匀分布,将-1≤z<2再细分为三个区间求出上式概率.
③当-1≤z≤0时,有0≤z+1≤1,-2≤z-l≤-1,故
P(Y≤z)=P(Y≤z-1)=0.

④当0≤z<1时,有1≤z+1<2,-1<z-1<0,故P(Y≤z-1)=0.

⑤当1≤z<2时,有2<z+1<3,0≤z-1<1,故
【答案解析】