设函数f(x,y)在x 2 +y 2 ≤1上连续,使
f(-x,y)=f(x,y),f(x,-y)=-f(x,y)
f(-x,y)=f(x,y),f(x,-y)=f(x,y)
f(-x,y)=-f(x,y),f(x,-y)=-f(x,y)
f(-x,y)=-f(x,y),f(x,-f)=f(x,y)
解析:要求f(x,y)关于x和y都是偶函数。