填空题
2.
请用等价、同阶、低阶、高阶回答:设f(x)在x
0
可微,f'(x
0
)≠0,则△x→0时f(x)在x=x
0
处的微分与△x比较是( )无穷小,△y=f(x
0
+△x)一f(x
0
)与△x比较是( )无穷小,△y—df(x)
1、
【正确答案】
1、同阶;同阶;高阶
【答案解析】
df(x)
=f'(x
0
)≠0知这时df(x)
与△x是同阶无穷小量;按定义
=f'(x
0
)≠0,故△y与△x也是同阶无穷小量;按微分定义可知差△y—df(x)
提交答案
关闭