设矩阵A=(α
1
,α
2
,α
3
,α
4
),其中a
2
,a
3
,a
4
线性无关,a
1
=2a
2
一a
3
,向量b=a
1
+a
2
+a
3
+a
4
,求方程Ax=b的通解.
【正确答案】正确答案:因α
2
,α
3
,α
4
线性无关,故r(A)≥3.又α
1
,α
2
,α
3
线性相关,因此由α
1
,α
2
,α
3
,α
4
线性相关可知r(A)≤3.因此r(A)=3,从而原方程的基础解系所含向量个数为4—3=1,且由

即x=(1,一2,1,0)
T
满足方程Ax=0,所以x=(1,一2,1,0)
T
是该方程组的基础解系.又b=a
1
+a
2
+a
3
+a
4

=(1,1,1,1)
T
是方程.Ax=b的一个特解.因此由非齐次线性方程组解的结构可知,原方程的通解为

【答案解析】