解答题
7.
设P(x)在[0,+∞)连续且为负值,y=y(x)在[0,+∞)连续,在(0,+∞)满足)y'+P(x)y>0且y(0)≥0,求证:y(x)在[0,+∞)单调增加.
【正确答案】
由y'+P(x)y>0(x>0)
y(x)]'>0 (x>0),又
y(x)在[0,+∞)连续,
y(x)>0(x≥0)
y'(x)>-P(x)y(x)>0 (x>0)
y(x)在[0,+∞)单调增加.
【答案解析】
提交答案
关闭