【正确答案】正确答案:因为f(x)在[a,b]上连续,所以f(x)在[a,b]上取到最小值m和最大值M,显然有m≤f(x
i
)≤M(i=1,2,…,n), 注意到k
i
>0(i=1,2,…,n),所以有k
i
m≤k
i
f(x
i
)≤k
i
M(i=1,2,…,n),同向不等式相加,得 (k
1
+k
2
+…+k
n
)m≤k
1
f(x
1
)+k
2
f(x
2
)+…+k
n
f(x
n
)≤(k
1
+k
2
+…+k
n
)M, 即m≤

≤M, 由介值定理,存在ξ∈[a,b],使得f(ξ)=
