解答题
5.
试证明n维列向量组α
1
,α
2
,…,α
n
线性无关的充分必要条件是行列式
【正确答案】
证
记n阶矩阵A[α
1
与α
2
…α
n
],则α
1
与α
2
…α
n
线性无关的充分必要条件是∣A∣≠0.
另一方面,由
【答案解析】
本题主要考查满秩方阵性质的应用及矩阵乘法的概念.注意,矩阵乘法的本质是“在行乘右列”,由此可知矩阵(α
i
T
α
j
)
m×n
的第i行[α
T
i
α
1
α
T
i
α
2
…α
T
i
α
n
]可以写成α
T
i
[α
1
α
2
… α
n
],因此可将矩阵 (α
T
i
j
)
m×n
写成A
T
A的形式,从而建立起行列式D与∣A∣的关系,这是本题证明之关键.
提交答案
关闭