解答题 4.(09年)设曲线y=f(χ),其中f(χ)是可导函数,且f(χ)>0.已知曲线y=f(χ)与直线y=0,χ=1及χ=t(t>1)所围成的曲边梯形绕χ轴旋转一周所得的立体体积值是该曲边梯形面积值的πt倍,求该曲线的方程.
【正确答案】由题设可知旋转体体积为V=∫1tf2(χ)dχ
曲边梯形的面积为S=∫1tf(χ)dχ
由题设可知,π∫1tf2(χ)dχ=πt∫1tf(χ)dχ
即∫1tf2(χ)dχ=t∫1tf(χ)dχ
上式两端对t求导得
f2(t)=∫1tf(χ)dχ+tf(t) (*)
继续求导得2f(t)f′(t)=f(t)+f(t)+tf′(t)
即(2y-t)=2y (其中y=f(t))
在(*)式中令t=1得f2(1)=f(1),即f(1)=1或f(1)=0.而由题设知f(t)>1,则f(1)=1,代入t=知,C=,即t=
则所求曲线方程为2y+-3χ=0.
【答案解析】