单选题 设y=(1+sin x) x ,则dy∣ x=π =
【正确答案】 A
【答案解析】解析:因y=(1+sin x) x =e xln(1+sin x) ,则 dy=e xln(1+sin x) d[xln(1+sin x)] =(1+sin x) x {ln(1+sin x)dx+xd[ln(1+sin x)]} =(1+sin x) x [1n(1+sin x)dx+ d(sin x)] =(1+sin x) x [1n(1+sin x)dx+ dx] =(1+sin x) x [ln(1+sin x)+ ]dx, 所以dy∣ x=π =(1+sinπ) x ln(1+sinπ)+