设f(x)在任意点x
0
∈(一2,+∞)有定义,且f(一1)=1,a为常数,若对任意x,x
0
∈(一2,+∞)满足f(x)一f(x
0
)=
A、
连续,但不一定可微.
B、
可微,且f'(x)=
C、
可微,且f'(x)=
D、
可微,且f(x)=
【正确答案】
D
【答案解析】
解析:由题设增量等式应得到f(x)在x=x
0
处可导,而x
0
又是(一2,+∞)内任意一点,于是f(x)在(一2,+∞)内处处可导,且f'(x)=一
,积分得f(x)=一ln(2+x)+lnC=ln
,再由f(一1)=1,即得lnC=1,解得C=e.所以在(一2,+∞)内有表达式f(x)=ln
提交答案
关闭