设a=(a
1
,a
2
,…a
n
)
T
,a
1
≠0,A=aa
T
,
(1)证明λ=0是A的n-1重特征值;
(2)求A的非零特征值及n个线性无关的特征向量.
【正确答案】正确答案:(1)A为对称阵,故A与对角阵∧=diag(λ
1
,λ
2
,…,λ
n
)相似,其中λ
1
,λ
2
,…,λ
n
是A的全部特征值. 因为A=aa
T
且a≠0,所以r(A)=1,从而r(∧)=1,于是∧只有一个非零对角元,因此λ=0是A的n-1重特征值. (2)设λ
1
=a
T
a,λ
2
=…=λ
n
=0. 因为Aa=aa
T
a=(a
T
a)a=λ
1
a,所以p
1
=a是对应于λ
1
=a
T
a的特征向量.对于λ
2
=…=λ
n
=0,解方程Aχ=0,即aa
T
χ=0. 已知a≠0,因此a
T
χ=0,即a
1
χ
1
+a
2
χ
2
+…+a
n
χ
n
=0,所以其余(n-1)个线性无关特征向 P
2
=(-a
2
,a
1
,0,…,0)
T
, P
3
=(-a
3
,0,a
1
,…,0)
T
, P
n
=(-a
n
,0,0,…,a
1
)
T
.