单选题 11.设二次型f(x1,x2,x3)在正交变换x=Py下的标准形为2y12+y22—y32,其中P=(e1,e2,e3).若Q=(e1,e2,e3),则f(x1,x2,x3)在正交变换x=Qy下的标准形为
【正确答案】 A
【答案解析】设二次型的矩阵为A,则由题意知矩阵P的列向量e1,e2,e3是矩阵A的标准正交的特征向量,对应的特征值依次是2,1,一1.即有
Ae1=2e1,Ae2=2e2,A3=23
从而有
AQ=A(e1,—e3,e2)=(Ae1,—Ae3,Ae2)一(2e1,—(—e3),e2)
=(e1,—e3,e2)
矩阵Q的列向量e1,—e3,e2仍是A的标准正交的特征向量,对应的特征值依次是2,一1,1.矩阵Q是正交矩阵,有Q—1=QT,上式两端左乘Q—1,得
Q—1AQ=QTAQ=