【正确答案】正确答案:(1)对

x,x
0
∈[a,b],有 f(x)=f(x
0
)+f"(x
0
)(x一x
0
)+

(x-x
0
)
2
>f(x
0
)+f"(x
0
)(x—x
0
),在上式中分别取x=x
1
,x=x
2
,

得到

上述两式相加即得证. (2)先证(i).由(1)有f(x)≥f(x
0
)+f"(x
0
)(x—x
0
),分别取x=x
1
,x=x
2
,x
0
=λx
1
+(1一λ)x
2
,得到 f(x
1
)≥f(x
0
)+(1一λ)f"(x
0
)(x
1
—x
2
), ① f(x
2
)≥f(x
0
)+λf’(x
0
)(x
2
一x
1
). ② λ×①+(1一λ)×②得 λf(x
1
)+(1-λ)f(x
2
)≥f(x
0
)=f(λx
1
+(1一λ)x
2
), 得证

再证(iv).

∈[a,b],设G为|f(x)|的上界,取绝对值充分小的δ,m<n,使得 x
1
=x
2
=…=x
m
=x+nδ,x
m+1
=…=x
n
=x.由(ii)知
