解答题 设A为三阶实对称矩阵,A的每行元素之和为5,AX=0有非零解且λ1=2是A的特征值,对应特征向量为(-1,0,1)T
问答题 18.求A的其他特征值与特征向量;
【正确答案】因为A的每行元素之和为5,所以有A=5
即A有特征值λ2=5,对应的特征向量为
又因为AX=0有非零解,所以r(A)<3,从而A有特征值0,设特征值0对应的特征向量
,根据不同特征值对应的特征向量正交得解得特征值0对应的特征向量为
【答案解析】
问答题 19.求A.
【正确答案】令P=,P-1,由P-1AP=,得
A=PP-1
【答案解析】