【正确答案】正确答案:(Ⅰ)先求相应齐次方程的通解,由于其特征方程为λ
2
-3λ=λ(λ-3)=0,所以通解为

再求非齐次方程的特解,由于其自由项为一次多项式,而且0是特征方程的单根,所以特解应具形式y
*
(χ)=χ(Aχ+B),代入原方程,得 [y
*
(χ)]〞-3[y
*
(χ)]′=2A-3(2Aχ+B)=-6Aχ+2A-3B=2-6χ. 比较方程两端的系数,得

解得A=1,B=0,即特解为y
*
(χ)=χ
2
.从而,原方程的通解为. y(χ)=χ
2
+C
1
+C
2
e
3χ
,其中C
1
,C
2
为任意常数. (Ⅱ)由于cosχcos2χ=

(cosχ+cos3χ),根据线性微分方程的叠加原理,可以分别求y〞+y=

cosχ与y〞+y=

cos3χ的特解y
*
(χ
1
)与y
*
(χ
2
),相加就是原方程的特解. 由于相应齐次方程的特征方程为λ
2
+1=0,特征根为±i,所以其通解应为C
1
cosχ+C
2
sinχ;同时y〞+y=

cosχ的特解应具形式:y
1
*
(χ)=Aχcosχ+Bχsinχ,代入原方程,可求得A=0,B=

.即y
1
*
(χ)=

sinχ. 另外,由于3i不是特征根,所以另一方程的特解应具形式y
2
*
(χ)=Ccos3χ+Dsin3χ,代入原方程,可得C=-

,D=0.这样,即得所解方程的通解为 y(χ)=
