设A是n阶矩阵,α
1
,α
2
,…,α
n
是n维列向量,且α
n
≠0,若
Aα
1
=α
2
,Aα
2
=α
3
,…,Aα
n—1
=α
n
,Aα
n
=0.
(1)证明:α
1
,α
2
,…,α
n
线性无关;
(2)求A的特征值与特征向量.
【正确答案】正确答案:(1)令x
1
α
1
+x
2
α
2
+…+x
n
α
n
=0,则 x
1
Aα
1
+x
2
Aα
2
+…+x
n
Aα
n
=0→x
1
α
2
+x
2
α
3
+…+x
n—1
α
n
=0 x
1
Aα
2
+x
2
Aα
3
+…+x
n—1
Aα
n
=0→x
1
α
3
+x
2
α
4
+…+x
n—2
α
n
=0 x
1
α
n
=0 因为a
n
≠0,所以x
1
=0,反推可得x
2
=…=x
n
=0,所以α
1
,α
2
,…,α
n
线性无关. (2)A(α
1
,α
2
,…,α
n
)=(α
1
,α
2
,…,α
n
)

【答案解析】