选择题
7.
设A是3阶非零矩阵,满足A
2
=A,且A≠E,则必有 ( )
A、
r(A)=1.
B、
r(A-E)=2.
C、
[r(A)-1][r(A-E)-2]=0.
D、
[r(A)-1][r(A-E)-1]=0.
【正确答案】
D
【答案解析】
A是3阶非零矩阵,则A≠0,r(A)≥1.
A≠E,A-E≠0.r(A-E)≥1,
因A
2
=A,即A(A-E)=0,得r(A)+r(A—E)≤3,且
1≤r(A)≤2,1≤r(A-E)≤2.
故矩阵A和A-E的秩r(A)和r(A-E)或者都是1,或者一个是1,另一个是2(不会是3,也不会是0,也不可能两个都是2.故两个中至少有一个的秩为1).
故(A)、(B)、(C)均是错误的,应选(D).
提交答案
关闭