【正确答案】正确答案:对已知等式两边分别求导: 左边=(x∫
0
2x
f(t)dt+2∫
x
0
tf(2t)dt)'=∫
0
2x
f(t)dt+2xf(2x)—2xf(2x) =∫
0
2x
f(t)dt, 右边=[2x
3
(x一1)]'=8x
3
一6x
2
, 由题设有 ∫
0
2x
f(t)dt=8x
3
一6x
2
. 两边再对x求导得 2f(2x)=24x
2
一12x. 即f(2x)=6x(2x一1)=3.2x(2x一1).令u=2x,得f(u)=3u(u一1),即 f(x)=3x(x一1). 再求f(x)在[0,2]上的最值. 令f'(x)=6x一3=0,得x=

. 比较
