问答题
设{N1(t),t≥0}和{N2(t),t≥0}分别是强度为λ1和λ2的独立泊松过程,令X(t)=N1(t)-N2(t),t≥0,试求{X(t),t≥0}的均值函数与自相关函数。
【正确答案】mX(t)=E[X(t)]=E[N1(t)-N2(t)]=λ1t-λ2t=(λ1-λ2)tRX(t1,t2)=E[(N1(t1)-N2(t1)) (N1(t2)-N2(t2))]=E[N1(t1)N1(t2)-N1(t1)N2(t2)-N2(t1)N1(t2)+N2(t1)N2(t2)]=λ1min(t1, t2)+λ12t1t2-λ1t1·λ2t2-λ2t1·λ1t2+λ2min(t1,t2)+λ22t2=(λ1+λ2)min(t1, t2)+(λ1-λ2)t1t2
【答案解析】