【正确答案】正确答案:连续利用分部积分有 ∫
a
b
f(x)dx=∫
a
b
f(x)d(x-b)=f(a)(b-a)-∫
a
b
f'(x)(x-b)d(x-a) =f(a)(b-a)+∫
a
b
(x-a)d[f'(x)(x-b)] =f(a)(b-a)+∫
a
b
(x-a)df(x)+∫
a
b
f''(x)(x-a)(x-b)dx =f(a)(b-a)+f(b)(b-a)-∫f(x)dx+∫
a
b
f''(x)(x-a)(x-b)dx, 移项后得 ∫
a
b
f(x)dx=

(b-a)[f(a)+f(b)]+
